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The static magnetoelastic coupling in ferromagnetic or anti-
ferromagnetic cubic crystals is analyzed in terms of a general 
formalism dictated by symmetry considerations. Besides the 
coupling of the spins to the external strains, resulting in external 
magnetostriction, the spins can also couple to internal strain 
modes. Only particular types of ionic displacements can couple 
to the spins, and these are classified. The spin operators which 
enter the theory are analyzed in terms of Tensor Kubic Operators, 
which are operator analogs of the Kubic harmonics, and which 
generate the irreducible representations of the cubic group. All 
equilibrium ionic displacements are found explicitly, and their 
temperature dependence is obtained. These equilibrium strains 

then lead to a general expression for the magnetoelastic contribu
tion to the anisotropy energy and to the specific heat. On the basis 
of the usual / ( /+ l ) /2 power law we derive the temperature 
dependence of the magnetoelastic coupling coefficients and of 
their contributions to the anisotropy energy and specific heat. 
The available experimental data on magnetostriction, magnetiza
tion, and elastic constants for nickel are specifically analyzed. 
In general, magnetically induced strains lower the symmetry 
from cubic, depending on the direction of the magnetization and 
on the particular strain modes supported by the crystal. We 
analyze these deviations from cubic symmetry and show which 
symmetry groups remain below the magnetic transition. 

1. INTRODUCTION 

BY virtue of the dependence on distance of the ex
change integral, of the spin-orbit interaction, or of 

the dipole-dipole interaction, the spin system in a ferro
magnetic or antiferromagnetic crystal is coupled to the 
ionic displacements. The static portion of this inter
action results in a shift in the equilibrium ionic posi
tions (relative to the case with no magnetoelastic 
coupling), with resultant shifts of both the phonon and 
magnon spectra. The dynamic portion of the inter
action produces magnon-phonon scattering. 

The simplest aspect of the static interaction, and the 
aspect which has been considered previously, is the ex
ternal magnetostriction, or the change in the macro
scopic crystal dimensions. In addition there are shifts 
in the ionic coordinates within each unit cell, and, in 
some circumstances, this "internal" magnetostrictive 
coupling may be considerably larger than the external 
magnetostriction. Furthermore, the induced ionic dis
placements modify the symmetry of the crystal and 
reflect back to alter the magnetic properties, possibly 
changing the nature of the Curie transition (from second 
order to first order), and changing the temperature de
pendence of the anisotropy energy. In most common 
materials this alteration is small, but, again, there are 
circumstances in which it can be relatively large and 
significant. We shall, here, develop a general theory of 
the magnetoelastic coupling, including all types of 
elastic modes (which we classify according to their 
group theoretical properties), and considering explicitly 
the influence of this coupling on the magnetic properties. 
In addition, in Sec. 8, we will classify the possible 
crystal symmetries which, by virtue of the magneto-

* Supported by the Office of Naval Research through The Catho
lic University of America and the University of Pennsylvania. 

elastic coupling, can appear below the Curie tempera
ture in a crystal which is cubic above the Curie 
temperature. 

Direct observation of the internal magnetostriction 
is, unfortunately, more difficult than observation of the 
external magnetostriction. However, x-ray observations 
may detect some shifts, such as that of the oxygen 
uu parameter" of ferrospinels, which are elastically 
"soft." The longitudinal standing spin waves and canted 
spin arrangements of the rare earths, of hausmannite, 
and of various other ferrimagnets should also produce 
characteristic internal strains or, in certain cases, 
superlattice lines which may be observable by x-ray 
means. But perhaps the most sensitive way to observe 
the magnetostrictive coupling to internal modes is by 
resonance. In particular, rotation of the magnetization 
alters the ionic positions within the unit cell and 
changes the crystalline fields and orbital overlaps. These 
alterations should be detectable as shifts in nuclear 
resonance frequencies. Another possibility is that the 
spin-lattice interaction (and, hence, the ferrimagnetic 
resonance linewidth) of the rare-earth ions in doped 
garnets may reflect the shift of internal ions with rota
tion of the magnetization. Furthermore, the destruction 
of the tenth-power law for the magnetocrystalline 
anisotropy, alteration of the temperature dependence 
of the external magnetostriction, a change in the type 
of magnetic phase transition from second order to first 
order, and an anisotropic contribution to the specific 
heat, can all provide observational evidence for internal 
magnetostrictive coupling. 

The classical static theory of magnetostriction in 
cubic crystals was originally given by Becker and 
Doring.1 In that theory the magnetization is coupled 

1 R. Becker and W. Doring, Ferromagnetismus (Verlag Julius 
Springer, Berlin, 1939), p. 132, 145. 
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to the uniform macroscopic strain by terms in the free 
energy, involving various polynomials in the strains 
multiplied by polynomials in the direction cosines of the 
magnetization. The form of these polynomials is dic
tated entirely by symmetry considerations, and the 
magnitude of these coupling terms is represented by 
phenomenological magnetoelastic coupling coefficients, 
of unknown temperature dependence. 

We follow a similar, but quantum-mechanical pro
cedure, coupling the spin and elastic modes in the 
Hamiltonian rather than in the free energy with tem
perature-independent coupling coefficients. This requires 
consideration of the symmetry of spin-operator func
tions, and the introduction of those combinations of 
spherical tensor operators which generate the irreducible 
representations of the cubic group. These operators are 
the quantum mechanical analogs of the Kubic har
monics of Von der Lage and Bethe,2 and we shall refer 
to them as Tensor Kubic Operators (TKO). The re
quirement that the Hamiltonian be fully symmetric 
under all the operations of the cubic group then dic
tates the form of the magnetoelastic interaction, as 
well as of the elastic energy. We shall find that in cubic 
crystals there are only five characteristic types of 
magnetoelastic coupling terms, three of which appear 
in the external dilatations and shears as well as in the 
internal modes. Only certain symmetry classes of modes 
can couple to the spins. For each of the five types of 
coupling terms, we calculate the equilibrium strains as 
a function of temperature and of magnetization direc
tion, the resultant crystal symmetry, and the contribu
tion of these terms to the magnetocrystalline anisotropy 
energy and to the specific heat. 

For the sake of analytic simplicity we restrict our 
treatment to those cases in which the magnetoelastic 
coupling is the sum of interactions of single spins with 
the strain field (excluding, for instance, magnetoelastic 
coupling arising from a strain dependence of the ex
change integral). Particularly in the antiferromagnetic 
oxides the dominance of the one-ion source of the 
coupling is strongly suggested by the one-ion character 
of the magnetocrystalline anisotropy, as suggested in 
ferrites and garnets by Yosida and Tachiki,3 and by 
Wolf,4 and demonstrated by Folen and Rado5 and by 
Geschwind.6 

We further restrict our treatment to those structures 
in which all magnetic ions are crystallographically 
equivalent and in which their average spin directions 
are all coaxial; again, this applies to most simple ferro
magnetics and antiferromagnets, although canted and 
spiral spin structures are excluded. Generalization to 
these more complex structures will be given elsewhere. 

2 F. C. Von der Lage and H. A. Bethe, Phys. Rev. 71, 612 
(1947). 

3 K. Yosida and M. Tachiki, Progr. Theoret. Phys. (Kyoto) 
17, 331 (1957). 

4 W. Wolf, Phys. Rev. 108, 1152 (1957). 
5 V. J. Folen and G. T. Rado, J. Appl. Phys. 29, 438 (1958). 
6 S. Geschwind, Phys. Rev. 121, 363 (1961). 

Although the internal magnetostriction can destroy 
the tenth-power law for the temperature dependence 
of the anisotropy in a ferromagnet, introducing both 
low-power terms and other terms varying as very high 
powers, it should be noted that these terms cannot 
account for the puzzling behavior of iron7 and nickel8 

at very low temperatures. (It should be recognized 
though that over most of the range of magnetization, 
the classical theory describes the temperature depend
ence of the anisotropy rather well.) These metals have 
only a single ion per unit cell, and consequently possess 
no internal modes of homogeneous ionic displacement. 
Furthermore, the coefficients of the magnetoelastic 
coupling to the external strain modes are known from 
magnetostriction measurements and are too small to 
produce the observed deviations of the temperature 
dependence of the anisotropy. However, the tempera
ture dependence of the magnetostriction is fairly well 
accounted for by the theory, as we demonstrate in Sec. 
7 by examination of the available data. 

2. THE GENERAL HAMILTONIAN 

The Hamiltonian is 

H = Hm-{-He-\-Hme-\-Hay (1) 

these terms being the intrinsic magnetic energy, the 
elastic energy, the magnetoelastic coupling, and the 
intrinsic anisotropy energy, respectively. The inter
action with an external field, if present, is included in 
II m; it will be reflected in the analysis by the specifica
tion of a direction of the average magnetization, £. 

The magnetoelastic energy, which must transform 
according to the fully symmetric irreducible representa
tion T«, is to be formed from the direct product of the 
spin and elastic basis functions. As the direct product 
of two representations contains Ta only if the repre
sentations are equivalent, we can immediately limit the 
representations which are permissible. 

Consider first the effect of time reversal, which is an 
element of the cubic group (although not of the full 
Shubnikov group of the magnetic crystal). Under time 
reversal, all strain components are invariant, whereas 
spin components are reversed. Hence, real TKO's in
volving odd powers of the spin operators transform 
under irreducible representations which are antisym
metric in the time reversal, and such TKO's cannot 
couple with the elastic components. We therefore re
strict ourselves to real TKO's of even degree. 

Conversely, we limit the permissible strain modes by 
considering the operation of spatial inversion. Every 
spin component, and, hence, every TKO, is invariant 
under this operation. Consequently the spins can couple 

7 C. D. Graham, Jr., Fifth Conference on Magnetism and 
Magnetic Materials, November 16-19, 1959, Detroit, Michigan 
[J. Appl. Phys. (to be published)]. At low temperatures K\, for 
iron, seems to vary as less than the fifth power of the magnetization. 

8 E . W. Pugh and B. E. Argyle, IBM Research Note NC-32 
(unpublished). These authors report that the first anisotropy 
constant varies as rapidly as the 100th power of the magnetization. 
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TABLE I. The classical Kubic harmonics which are even under inversion. All functions normalized to unity. Functions in square 
brackets indicate functions with normalization factors omitted. Factors of p~l are omitted throughout. From Von der Lage and Bethe 
(reference 2). 

K«>*(Q = (47r)-i/2[5(3X7)1/2/4]{x4+y+34-fP
4} 

£«.•({) = (47r ) - 1 / 2 [3X7Xl l (2Xl3) 1 V8]{^V+( l /22) [^« . 4 ] P
2 - (1/105)P«} 

I > &'**(() = (47r)-^[(2X3X5X7XllXl3)1-2/8]{xH3'2-s2)+y(s2-A:2)+34Cr2-y)} 

r7 i ^ 2 « ) - (M-m(sy*{z*-l&+y*)} 
K2y*{Q = (47r)-^2C(3X5)^2/2]{^-/} 

KS>KK) - (47r)-i/2C7(3X5)^2/2]{s4-i(^+3'4)- (6/7)C^7.2]p2} 
K2y^Q = (4x) - i / 2 C3X7(5)^ /4 ]{^-y- (6/7)[i^.2]p2} 

KS'^Q = (4T)-i/2[ll(2X7X13)1 .V4]{s6-i(x6+3'6)- (15/ll)Ci^i^-4>2- (5/7) [^i^2>4} 

K2y>«(0 = (47r)-1 /2Cll(2X3X7Xl3)1 /2 /8]{x6- /- ( 1 5 / l l ) [ i r 2 ^ > 2 - (5/7) p ^ 2 ^ } 

Tt Kz^(0 = (4TT) - I / 2 (3X5) 1 %3; 

K,<•*(& = (47r)-i/2[3X7(5)^2/2>3;{s2- (l/7)p2} 

KZ*>*(Q »(47r)- i /2C3Xll(2X3X5x7Xl3)^2 /16>3'{24-(6/l l)sV+(l/33)p4} 

^ € l 6 ' « ) = (4^r i / 2 C(2X3X7XllX13) 1 / 2 /2>y{^+ 3 ; 4 - (5/8)(*2+;y2)2} 

IV *.«'.««) - (4*)-1*&(SX7)™/2]xy{a*--y*) 

^ ' • 6 ( C ) = (47r)-^2C3XU(7Xl3)1 /2 /4]^{x2-^}{ s
2-( l / l l )p2} 

only to strain modes which are symmetric under spatial 
inversion. 

The irreducible representations of the cubic group 
are ten in number, of which only five are even under 
inversion. Following Von der Lage and Bethe, these 
five representations are denoted by Ta (the fully sym
metric representation); Tp> (one-dimensional); Ty (two-
dimensional) ; I \ and Ts> (both three-dimensional). The 
Kubic harmonics, which are classical basis functions 
for these representations, are given in Table I, which is 
taken from Von der Lage and Bethe with a modification 
in normalization; we prefer to normalize all functions 
to unity. 

We now consider each of the separate terms in the 
Hamiltonian. 

First, we construct the elastic Hamiltonian. The 
complete specification of the ionic configuration of the 
crystal is given by the standard strain components exx? 

*yv, *zz, txy, cyz, eZXj plus a number of additional co
ordinates specifying the displacements of the ions 
relative to the center of the unit cell. Linear combina
tions of these coordinates form bases for the irreducible 
representations. Thus, the six external strain com
ponents are replaced by the following six quantities: 

e*x+ eyv+ ezz, belonging to T«; (2a) 

belonging to Ty; (2b) 

Cl/Z) c Z * j ZXyj belonging to T€. (2c) 

[It will be noted that the symbol e represents both the 
strains, and one of the irreducible representations. Both 
uses are conventional, and the ambiguity is resolved 
by the context.] Similarly, the internal coordinates are 

to be replaced by linear combinations of the proper 
symmetry. 

Let the strain coordinates which belong to Ta be 
denoted by ea,>, with the value j = 0 reserved for the 
volume dilatation 

1 \txx\ tyy\~ tzz) - (3a) 

Similarly strain coordinates belonging to I > are de
noted by e^'1', with j numbering the various coordinates 
of this type. There is no coordinate of this type with 
y=0 (i.e., no external strain). 

Pairs of strain coordinates which generate the two-
dimensional representation I \ are denoted by eiy'3' and 

these components transforming like the Kubic *2 

harmonics Kiy>2(Q, and K2
y'2(Q, respectively 

external s t ra ins a re again character ized b y j = 0 ; 

and 
e 2 ^ I ( 1 5 ) l / 2 [ € x x _ e ^ 

The 

(3b) 

(3c) 

Finally, triplets of coordinates belong to T€ are de
noted by ef'3' (i= 1,2,3) and those belonging to T8> are 
denoted by e,-5'»'' (i= 1,2,3). Only in the former case is 
the value j=0 present, with 

€2 «,o= and e3 
e,0 = (3d) 

The elastic energy, in the harmonic approximation, 
arises from the direct product of first-order strain 
representations. For the two-dimensional representa
tions the fully symmetric quantity extracted from the 
direct product of the pair e^'1' e2

y,1\ and the pair 
d^*, e2

y'k is simply e i^e i^H^ 'W* '* . Similarly for 
the three-dimensional representations, the fully sym
metric combination is X ^ ' V 5 ' * (and similarly for 
r$')- Therefore, the most general fully symmetric 
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harmonic strain energy is 

^ = f E E c y / E ^ V ' f c , (4) 

or, if we assume the strain components to be chosen so 
as to diagonalize this quadratic form, the expression for 
the elastic energy becomes 

We recall that j and k number the various modes of a 
given type of representation; /x takes the five values 
a, jS', 7, e, 5'; and i takes only the single value unity 
for n=a; and 0' takes the values 1 and 2 for M=Y> and 
takes 1, 2 ,3 for ju=e and 5f. The quantities c,,fc

M (or 
c/) are elastic constants. 

For j = 0 the elastic constants c0
M are related to the 

conventional elastic constants Cn, C12, and cu as follows: 

co a=ifcn+2ci2), (6a) 

^ = ( 2 / 1 5 ) ( c i i - c i 2 ) , (6b) 

C0e=C44. (6° ) 

I t will be noted that we have appended only a single 
subscript to the coM, implying that the external strain 
modes e/-0 are normal modes [compare Eqs. (4) and 
(5)]. In this matter we have two possibilities. If the 
€iM,° are interpreted as the external strains as com
monly measured (by a strain gauge for instance), they 
contain internal contributions which automatically 
admix so as to form a normal mode. The associated 
elastic constants are then the empirical elastic con
stants, as defined by Eq. (6). Direct empirical evidence 
for this admixture of internal displacements to the 
external strains has been given by Walsh9 and by 
Kaminow and Jones,10 who studied paramagnetic and 
ferrimagnetic resonance as a function of pressure. An 
alternative approach would be to define the external 
strain components, in accordance with elementary 
elasticity theory, as the coefficient of a homogeneous 
distortion; that is, all interatomic distances are pro
portionally increased, and the resulting strain is a linear 
combination of the true normal modes. 

The magnetoelastic energy is obviously given in a 
completely analogous fashion. Thus, 

Hme= - I I 5y,,M S ef'>'Wl. (7) 
M 3,1 i 

The quantity Xf'1 is a TKO belonging to the irreducible 
representation T^. If TM is three dimensional, i = 1, 2, 3 
and similarly for other dimensionalities. Again, I num
bers the different possible TKO's which belong to the 
given representation. The constants Bj,f are phe-
nomenological magnetoelastic coupling coefficients. 

As we have mentioned before, the TKO's are linear 
combinations of spherical tensor operators. As we shall 

9 W. M. Walsh, Jr , Phys. Rev. 114, 1473, 1485 (1959). 
1 01. P. Kaminow and R. V. Jones, Phys. Rev. 123,1122 (1961). 

see in the following section, TKO's of Ta cannot be 
formed from spherical tensors of degree 2, but can be 
formed from spherical tensors of degree 4 and 6. 
Similarly, there are TKO's of Tp> of degree 6; of Ty of 
degree 2, 4, 6; of Tg, of degree 4 and 6; and of T€ of 
degree 2, 4 and two different forms each of degree 6. 
We adopt the degree of the TKO as the labeling index /. 
Thus, / takes the following values: 

ju=a, J=4, 6, • • •; 

M = 0', J=6, •••; 

/i = 7, 2 = 2 , 4 , 6 , ••• ; (8) 

M=s' , ;=4,6 , •••; 

M = e ? /=2 ,4 ,6 ,6 ' , •••. 

The last term in the Hamiltonian represents the in
trinsic magnetic anisotropy of the unstrained crystal. 
I t may be pseudodipolar or pseudoquadrupolar, or it 
may be a single-ion anisotropy arising from spin-orbit 
coupling and crystalline field splitting. In the latter 
case the anisotropy term in the Hamiltonian would 
have the particular form 

Ha=-ZiKiXa'1, (9) 

where KI is the "intrinsic anisotropy coefficient." For 
definiteness, we shall assume this form of the anisotropy, 
although this is in no way necessary. In fact, the 
Hamiltonian should contain additional terms involving 
the amplitudes of the phonons, or of the ionic oscilla
tions relative to the average positions as described by 
the e's. These include terms coupling spins to phonons, 
giving rise to dynamic aspects, or phonon-magnon 
scattering. The terms quadratic in the phonon ampli
tudes give a temperature-dependent elastic energy; if 
the phonon spectrum is dependent on the et's, this 
effectively introduces a temperature dependence in the 
elastic constants. However, this temperature depend
ence is known to be small empirically. 

Recapitulating, the total Hamiltonian is 

ff=ffm+iE£*/£(«M'02 

H j i 

- E E Bitt E ^ • ' K Z - ' + E Ktx
a-1. (10) 

3. THE FORMAL SOLUTION 

Expanding to first order in the magnetoelastic 
coupling coefficients, the free energy is 

F = F r o + n i : ^ i : ( 6 ^ ) 2 

- E E Bi.f E « M 3 W - ' > + E Ki(xa-1), ( ID 
M 3,1 i I 

where ( ) denotes a dynamical average with respect to 
the unperturbed density matrix. 
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Minimizing the free energy with respect to the strains, 

dF/def->'=0, (12) 
one finds 

€?>>'= (l/cf)ZiBj AW)- (1 3) 

In Sec. 5 we shall show11 that the statistical average 
of a TKO is proportional to a Kubic harmonic. That is 

(3C^ i)=Cy !(r)0)^"' !(C)> (14) 

where yi(t)° is the spherical tensor operator which 
transforms identically to the Legendre polynomial Pz°, 
with the magnetization direction (or the common axis 
of the sublattice magnetization) as the polar axis, as 
indicated by the subscript f in the average; (^la)0)ls 

a function of the temperature only. Kf>l is the Kubic 
harmonic [a function of the angles 6 and <j> of the 
(sublattice) magnetization axis relative to axes fixed 
in the crystal] which transforms under the cubic group 
in the same way as the TKO. For compactness let 

BjAyui^SiAT). (15) 
Then 

1 
6 i ^ ' = - E B y / ^ . (16) 

cf * 

This is the formal solution for the strain components as 
a function of temperature and (sublattice) magnetiza
tion direction. In a later section we shall discuss this 
solution in greater detail, elaborating on the tempera
ture dependence and considering some of the strains 
explicitly. For now, we obtain the general form of the 
effective spin Hamiltonian and of the free energy and 
specific heat, which result from substituting this solu
tion for the strains into the Hamiltonian and the free 
energy. 

First we find the self-consistent spin Hamiltonian. 
Substituting the strain, Eq. (16), into the general 
Hamiltonian, Eq. (10), we obtain 

1 

M / Cf U ' i 

1 
- E E - Z BJtfBjtV» E WW-1 

n i Cf hi' i 

+ E K&.*-1. (17) 
Let 

E Kf^Kf^= E khth"-lK"'K (18) 
i I 

We will give explicit expressions for the expansion co-

11 See J. H. Van Vleck, Colloque International de Magnetisme 
de Grenoble, 1938 (unpublished). 

efficients kiltif'
1 in Sec. 4. Then 

1 
H=Hm+h HH—i: BitlfBith» E kh,i/'

lK«>1 

M 2 Cf h,h l 

- Z E - E Bi^Sj.t," E Kfxf 
M 3 Cf h.h i 

+ E <H3C«'*. (19) 
i 

This is the self-consistent Hamiltonian for the spin 
operators. The free energy can be found either from it, 
or from Eq. (11). Substituting the strains into Eq. 
(11) we find 

1 
F = Fm-i E E — E BjjfBjjf E kh,if'

lK*'* 
M 3 Cf h,h l 

+ E kiK*-K (20) 
i 

If we define the effective magnetocrystalline anisotropy 
coefficient kfif by 

F^Fm+ZKfuK«'1, (21a) 
i 

then 
1 

Kfli=Ki-h T.E—E hltiJ>-lBitifB,M*. (2ib) 
M j Cf h.h 

Whereas ki satisfies the famous 1(1+1)/2 power law for 
the magnetocrystalline anisotropy12 we see that the 
magnetoelastic coupling contributes additional terms 
of different temperature dependence, as we shall ex
amine subsequently. 

The physical source of this alteration in the tem
perature dependence of the anisotropy is as follows. For 
a given direction of the magnetization the crystal dis
torts under the influence of the magnetostrictive cou
pling, so that the symmetry is lower than cubic. This 
lower symmetry determines the temperature depend
ence of the anisotropy. I t should be noted, however, 
that the magnetostrictive distortion is cubically modu
lated as the magnetization vector is rotated. Conse
quently, although the magnitude and temperature 
dependence of the anisotropy are influenced by the 
distortion, the observed anisotropy retains its over-all 
cubic symmetry. 
f The pair of Eqs. (16) and (21) constitute a complete 
formal solution of the problem. Equation (16) defines 
the strain induced by the magnetoelastic coupling and 
characterizes the change in crystal symmetry below 
the Curie temperature. Equations (21) for the free 
energy completely determine the thermodynamics of 
the system; thus kfil(T) is the effective anisotropy 
constant, with an altered temperature dependence, and 
the specific heat, which depends on the direction of the 

12 N. Akulov, Z. Physik 100, 197 (1936). 
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TABLE II. Table of spherical tensor operators, normalized to unity, from / = 0 through 1=6. The symbol P{ } means the sum of 
all permutations of the operators in the bracket, taken in first order. Thus P{S+Sz

2}^S+Sz
2+SzS

+Sz-\-Sz
2S+. 

1 = 0 

1 = 1 

1 = 2 

1=3 

1 = 4: 

1=5 

^ 0 ° = 

<y2
2= 

--nQn 

-nilSz 

= n2
2(S+)2 

—P{S+SZ} 

^=—-tP{S+S-}+2S2*l 
V6 

^3 

^ 4 2 = -

P{(S+)2SZ) 

£P{(S+)2S-}+2P{S+S2)l 

lP{S+SzS-}+2Sz"2 

(IS)1'2 

«3 3 

(lO)1 '2" 

—P{(S+)*Sz} 
2 

nc 
-\p{ (s+ys-}+2P{ (s+)2sz

2)3 
2 X 7 l / 2 

«4 4 

[P{ (S+)2SzS-}+2P{S+Sz*)3 
2X7 1 / 2 

nc 

(70)i/2 

•nb
5(S+)* 

w5
5 

-[P{ (S+)2(S-)2} +2P{S+S2S~) +45 z
4 ] 

51/2 
-p{(s+ysz} 

1=6 

^ 5 3 = [P{ (S+YS-) +2P{ (S+)*S2n 
3(sy>2 

< y 5 2 = [P{ (S+)*SzS-}+2P{ (5+)25z
3}] 

2(15)i/2 

m l = 

^5° = 

»5° 

(2X3X5X7)"2 
-tP{(s+y(s-)2) 

«5° 

3(14)^ 

y<?=n<>«(s+y 

y<*=—P{(S+)*Sz} 
51/2 

«6° 

+2P{ (5+)25/5~} +4P{S+S/} ] 

~LP{ (S+)2SZ(S-)2} +2P{S+SZ*S~} + 4 5 / ] 

m 4 = [P{ (5+)55~}+2P{ (S+)4S*2}] 
(6X11)1-2 

<y6
3=- — DP{ (5+)4525"} +2P{ (5+) W } ] 

( 2 X 5 X H ) m 

« 6 6 

^ 6 J = -
3C5X11)1 

- [ P { ( 5 + ) 4 ( 5 ~ ) 2 } + 2 P { (5+)352
25"> 

+ 4 P { ( 5 + ) 2 S 2
4 } ] 

V<>1 = [ P { (5+)35*(S~)2} + 2 P { (S+)2SZ*S-} 
6(H) 1 / 2 

+4P{5+5/}] 

-[P{(S+)3(S-)3} 
2(3X7XU)1 / 2 

+2P{ (5+)25z
2(5-)2} +4P{5+52

45-} + 8 5 / ] 

magnetization? is of magnitude 

CV^CVM- T £ K">K 
1 dT2 

(22) 

In order to analyze the formal solution in detail we 
now proceed to study the TKO's explicitly, to obtain 
definite expressions for the expansion coefficients kix ,*/•*, 
and to study the temperature dependence of the Bjj*. 

4. TENSOR KUBIC OPERATORS 

The spherical harmonics °y **"(#,<£) of given / form a 
set of basis functions for the (2/+-1) dimensional irre
ducible representation of the full (spherical) rotation 

group. Similarly, the spherical tensor operators Tff* of 

given / form an equivalent basis, standing in one-to-

one correspondence with the spherical harmonics. The 

spherical tensor operator ^ i m is a polynomial in the spin 

operators13 Sx, Sy, Sz (or S+> Sz, S~). Although the rota

tion properties of the Tff are identical to the ^i"1, and 

although it is only these rotation properties which enter 

into the analysis, the specific forms of the yim are 

sometimes useful in explicit calculations. We give the 

%m through 1=6 in Table I I . 

The most convenient phase and normalization of the 

13 In the application made here, the spin operators are those of 
a single representative ion in the crystal. 
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TABLE III. Tensor Kubic Operators expanded in spherical tensors. 

I> 
I \ 

r« 

IV 

3Ci^2 

3C2?>4 

3C2?'6 

3Ci*2 

3C2*
2 

5C8
e'2 

3Ci'-4 

3C2«-4 

3C8«'4 

= (7/12)*'2n/4
0+ (5/24)i/2(«j|44+<y^) 

- ( l / 8 ) i ^ 6 ° - (7/16)^2('y64+'ye~4) 

- ( l l / 3 2 ) ^ 2 ^ 6
2 + ^ 6 " - 2 ) - (S/32yi*(<U6*+yc6) 

(5/12)1/^4°- (7/uy*M+yr*) 
a/s^eH-iW+yr4) 
- (s/32)MW+y<r*)+(n/32)^w+vc6) 

- ( l / ^ G t f - W 1 ) 

(-1/4) w-^r1) - a /WW-^r 8 ) 

4-^5/256)^2(«y6i+<y6-
1) -i(W2/32) W+yc*) 

+C(2X3X5Xll)1/2/32]('y«54-<y6-5) 
3C2«'6 - (-5^2/16) W-Vr1)- (9v2/32)('J/e3—^e^3) 

-C(2X3X5XH)1/2/32]W-^e-6) 

3Ci«-6' = +C(9Xll)1/2/16](«y6
14-<y6-1) 

+i[(2X5xii)1/2/32]('y«3+«ye-3) 
+C(2X3)^2/32]('y86+'y6-6) 

- - [ ( P X l l ) 1 ' 2 / ^ ] ^ 1 - ^ - 1 ) 
+[(2X5Xll)1/2/32](^^y6"«) 

-C(2X3)^2/32](^66-,y6-6) 

= +i(7^2/4) (yj+ycl)+(*/4) fttf+flr«) 
• (-7»«/4)(V4l-V4-*)+l W - V r t 

+*(3/32)^2('y6i+n/6-i)-i(15i/2/8)Cy6
3+n/6-3) 

-i(lli/2/8)(^e6+,y6-5) 
• - (3/32)*f i t f -w»)- (15»«/8) W - v r t 

+(ii1/2/8)(<y66-*y6-fi) 
• - (* /vz )Gt f -w*) 

ac2«.6'-

3C2
a ' '4 = 

3C»a ' '4 = 

3C2*'>6 = 

3Cs*'-6 = 

spherical tensors seems to be achieved by letting 

^ = - ( 5 . + i S , ) / ^ > 

5-= {Sx-iSv)/yJl. 

With this convention, 

(5-5+)=5, , 

Cs+s*) = - s + , 

(5-5.) = 5 - . 

(23a) 

(23b) 

(24a) 

(24b) 

(24c) 

Then14 the highest order spherical tensor of a given 
degree is 

yil=nt(S+y. (25) 

The lower order tensors are found by successive applica-
14 A. Meckler, Suppl. Nuovo Cimento 12, 1 (1959). 

tion of the formula 

,f^l } — l Ij (5-a)rt. (26) 

Meckler14 gives the normalization of the highest order 
tensor as 

2 !(2J+1) ! ( 2 5 - 0 ! 
WT= —. (27) 

(/!)225+/+l)! 

With this normalization, 

Tr(<yjm) t<yr '=^ (28) 

The symbol f signifies the adjoint. I t will be seen from 
the normalization formula that the operators %m are 
only supported by a spin of sufficient order that 

2S^l, (29) 

and the same statement, of course, applies to the 
TKO's. In Table I I we list the spherical tensor operators 
from yf down to yf. Operators of negative order are 
found by the formula 

yrm=(-t)m(yim)^ (30) 

yrm is found from yf by simply interchanging S+ and 
S~ in all formulas. I t will be seen from the table that, 
if Sx is replaced by x, Sy by y, and S* by z, the yf1 

reduce to the classical F f , apart from normalization, 
through cy4

3. y£ differs, and thereafter there are fre
quent departures. All yj reduce to Yi\ however. 

The Kubic harmonics JT/'K0,<£)=j£>'(O are linear 
combinations of the Ff*(0,#) which form basis functions 
for the TM irreducible representation of the cubic group : 

Ki^iO-Hmdi^Yr (3D 

The expansion coefficients have been calculated by 
Bethe15 and by Ebina and Tsuya.16 Our phase conven
tion is, however, slightly different from Ebina and 
Tsuya. We prefer to give the Yf1 the same phase as the 
yf1. Thus, our Yr differ from those of Ebina and 
Tsuya, and of Bethe, by the factor ( ~ l ) m . Further
more, in the three-dimensional representations our sub
scripts i = l , 2, 3 stand for #, y, z while in Ebina and 
Tsuya i= 1, 2, 3 represent z, x, y, respectively. 

The tensor Kubic operators 3C/'1 are linear combina
tions of the spherical tensor operators yf with the 
same expansion coefficients: 

#/•'=£« ^W^r. (32) 

The Mi"'1 then stand in one-to-one correspondence with 
the K^1, and form an equivalent basis for TM. The 
explicit expansions of Eq. (32) are given in Table I I I . 

In taking the direct product of the Kubic harmonics 
of Tfi with themselves, and extracting the fully sym-

16 H. A. Bethe, Ann. Physik 3, 133 (1929). 
16 Y. Ebina and N. Tsuya, Repts. Research Inst. Elec. Commun, 

Tohoku Univ. 12, 1 (1960). 
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metric combination, we are led to the quantity (see 
Eq. 18) 

Zi Kf'lW=Zi Kh'-lKatl- (3 3) 

The equation above constitutes a statement that the 
summation on the left is fully symmetric, and that it, 
therefore, is a sum of Kubic harmonics belonging to Ta. 
We proceed to calculate the expansion coefficients by 
inserting Eq. (31) into Eq. (33): 

mi ,m2 i 

= E ^ u / ' l E a 1 ( m ^ F r . (34) 

However, the addition theorem for the spherical har
monics is17 

Yh^Yh^ 
l,m\ 

(2*1+i)(2/2+i)y/» 

4ir(2H-l) / 
(hhOOlhUQ) 

be found in the tables by Shimpuku19 and by Rotenberg, 
Bevins, Metropolis, and Wooten.20 Some of the terms 
can be seen to vanish, and others can be simplified. In 
particular, the isotropic terms, which will add to the 
specific heat, are much reduced by the use of the sym
metry relations and special values of the Clebsch-
Gordan coefficients.21,22 Thus, by means of the sym
metry relation 

= (2^+l/2Z2+l)1 / 2(—l)u~m i 

X(hlmi-fn\ W/2-W2), (39) 

and the special value 

(liQm10\hOltn) = 5il,i5 (40) 

the isotropic coefficients become 

1 
Kh,h 

X < W J » I « I | W J H ) ) F , - (35) 
(4x) 1/2 

E ( - l ) m Z a . V " ' 1 ^ , - * . " ' ^ . ^ (41) 

where ( ••• !••• ) indicates a Clebsch-Gordan coefficient. 
Hence, 

/ ( 2 / 1 + l ) ( 2 / 1 + l ) \ W 
Z l - •) (hW\hh!0) 

1 \ 4 x ( 2 / + l ) / 

X Z L Y.ai,ml"
Maimi"-l*(lihm1m;i\hhlm)yr 

= T,kh,l^
lZai,ma-l%m. (36) 

m tn\ ,m2 * 

Because of the orthogonality of the Yf" we can equate 
coefficients of Yp to obtain 

Now the normalization of the Kubic harmonics re
quires that 

= E a * V ' l V * M (42) 
m 

l = E(-l)ma.-,m"'1a i,_m"' i. 
m 

Hence, if we let dM be the dimensionality of the juth 
irreducible representation, 

^V^DW*)1 '2]^,*,. (43) 

* J i . h " , = (-

( 2 / i + l ) ( 2 / , + l ) \ W 

4x(2Z+l) 
</l/200|/l/2»> 

-{hhm-m\hl2l0). (37) XEI 
m t #1,0° 

An alternate expression, sometimes more convenient, 
is obtained by equating coefficients of F*4 in Eq. (36): 

huh"'1 
f (2M-1)(2J 2+1)\ 1 / 2 (W2OOI hhlO) 

\ 4 i r(2/+l) / altA°'1 

X I ( / I ^ ( 4 - M ) I hlJA) £ aitm^aiA^M. (38) 

The Clebsch-Gordan coefficients which occur in Eqs. 
(37) and (38) can be evaluated by use of the usual 
expressions, as given by Edmonds18 or Rose17 or can 

17 M. E. Rose, Elementary Theory of Angular Momentum (John 
Wiley & Sons, Inc., New York, 1957), p. 61. 

18 A. R. Edmonds, Angular Momentum in Quantum Mechanics 
(Princeton University Press, Princeton, New Jersey, 1957), p. 45. 

In addition, by means of the symmetry relations be
tween the Clebsch-Gordan coefficients, it can be shown 
that 

kh,h
a'l-K^l=K,ia'\ h, h, 1*0. (44) 

In general, the expansion coefficients kilti/>
1 must be 

calculated by means of Eqs. (37) or (38), and are given 
in Table IV [actually, (4:T)ll2kh)i2

fi'l~}. These expressions 
for the coefficients kilti/

tl can then be used to evaluate 
the free energy [Eq. (21a)], the effective anisotropy 
constants [Eq. (21b)] and the specific heat [Eq. (22)]. 

5. TEMPERATURE DEPENDENCE 

In the equations for the strains, the free energy, and 
the specific heat there occur the quantities Bjt^(T), 
the temperature-dependent magnetoelastic coupling 

19 T. Shimpuku, Suppl. Progr. Theoret. Phys. (Kyoto) 13, 1 
(1960). 

20 M. Rotenberg, R. Bevins, N. Metropolis, and J. K. Wooten, 
The 3j and 6j Symbols (Massachusetts Institute of Technology 
Press, Cambridge, Massachusetts, 1959). 

21 G. Racah, Phys. Rev. 62, 438 (1942). 
22 L. Eisenbud, Ph.D. thesis, Princeton University, 1948 

(unpublished). 
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TABLE IV. Table of (iir)112^,^'1, the expansion coefficients for 
sums (over the dimensions of the /xth irreducible representation) 
of products of TKO's expanded in fully cubic TKO's. [See Eq. 
(18)]. 

(W*kilti2
a>i 

^ = 4 , Z2=4 / 1 = 6 , / 2=6 

/ = 6 

18(21)1/2 

11X13 
20(2)V2 

11(13)1/2 

-21(21)1/2 

11X17 
-40(2 X13)i/2 

11X17X19 

^ T r ) ^ , ^ ' . ' 

li=6, h=6 

1=6 

(21)i/2 

17 
-5X8(2 XI3) "2 

17X19 

X 
2 

2 

.Q" 
4 

0 

4X9 / ^ y ' 2 

11 X 1 3 \ 7 / 

6 

10/2X3X5\ i /2 

t lV 13 / 

o 

-(3X7)i/2 

V-2 
( 4 ^ 1 ^ / l t , 8 7 . 6 

4 

32 / 2 y 

1 1 \ 1 3 / 

W 
5X48 

11 X17X19 
-(2X13)i/2 

\ l > 
(4T)i/-^/ l tz2«* 

6 

-'©' ll(7)i/2 2X 

/3X13\ ' /2 1 5 / 15 \V-' 

1 1 \ 2 / 2 \ 2 X 1 1 X 1 3 / 
- 2 7 / 3 \ i / 2 1 5 / 2 X1/2 / 10 \V2 

11 \ 7 / 1 1 \ 1 3 / \ 1 1 X 1 3 / 
3 / 3 X 5 X 7 y 

<17\ 11 / 

- 5 9 3 
(3X7)i/2 

2X11X17 2X1 

2X17 
-(21)i/2 

\{2 
J i \ 2 

(47r)l/2^i1(j2e.6 

6 

3 0 / 6 \ i / 2 

1 1 \ 1 3 / 

any 
H \ 1 3 / 

-15(7)i/2 

2X11 
3(21)i/2 

4X11X17 
3 X5 X31 

11 X17X19 
-(2 X13)J/2 

3 / 7 y/2 

2 \ 5 X l l / 
- 2 7 /3X5X7\ i /2 

4 X 1 7 \ 11 / 
3 X 5 X 7 / 2 X 5 X 1 3 \ i / 

17X19 \ 11 / 

-3X5 
-(2X13)i/2 

/ i=4 / 2=6 / 1 = 6 / 2 = 6 

3 X 9 
-(3 X7) 

2X11(13)1/2 

- 2 X 3 / 3 X 5 X 7 \ i ^ 

11 \ 13 / 
7X9 /5 \ i /2 

L 1 X 1 7 \ 2 / 

- 3 X 1 6 
1 

11X17 
- 3 X4 X5 

11X17X19 

-(3X7)i/2 

-(2X13)1/2 

coefficients. The temperature dependence arises in 
taking the average value of a TKO in the unperturbed 
density matrix. The important feature of the unper
turbed density matrix is that it describes a system with 
the average value of the (sublattice) magnetization 
along some axis (, and that it has azimuthal symmetry 
around this axis. 

Expressing the TKO in spherical tensor operators, 

<jc/'0=E^,mM',<<yr>. (45) 

The spherical tensor operator yr can now be expressed 
in a new coordinate system with polar axis along C- Let 
Ti{$)m' be the spherical tensor operators in this new 
coordinate system. Then 

yr-Ziy Krr,|cyr)<yi(nm' 

= Z(Yi«f Yr)y Kt) (46) 

where the expansion coefficient (^i^f1' I ^i™) *s identical 
to the corresponding expansion coefficient for the 
spherical harmonics, and can, therefore, be written 
as the scalar product of two spherical harmonics 
{Yiin

m'\Yr). Taking the average value of %m with 
respect to the unperturbed density matrix 

<<yj">=E<^(r)-'l^">Cy«(r)"'>. (47) 

However, fyz(nw' transforms as eim'* under a rotation 
of <t> around the < axis, whence (cyi(t)m') = 0 unless 
w' = 0. Furthermore,10 

<F;(r)°i7rHmo, (48) 

where Yim(Q is the spherical harmonic of the angles 
6, (j> of the (sublattice) magnetization axis relative to 
the axes fixed in the cubic crystal. Hence, 

O&'-'H (ynt^H ' W ' W O , 

<3c/'')=^,"'((0(<y 1(1) °). 

(49) 

(50) 

This expression is the direct analog of a similar classical 
relation derived by Van Vleck,11 and, as he has shown, 
it is the basis of the tenth-power law for the lowest 
order anisotropy coefficient. In fact, the temperature 
dependence of ( ^un 0 ) 'ls t n e s a m e a s t n a t °f MHl+1)/2 

at very low temperatures, where M is the (sublattice) 
magnetization. Thus, we find from Table I I that 
cy2(n°'^'36 ,f2—5(5+1). In terms of the spin deviation 
operator cr, 5f = 5—cr, and only the two states a = 0,1 
are important at very low temperatures. Hence 5f2 

= 5 2 ( l - e r ) + ( 5 - - l ) V a n d 

<cy2(n0)- ( 2 5 - l)Stl-3(a)/Sl~(M/MQ)K 

At sufficiently low temperatures, the temperature 
dependences of all the magnetoelastic coupling co-
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efficients, which are related to (^(j-)0) by Eq. (15), are 
determined by this power law. In summary, if the first 
excited state in the space of two neighboring spins 
maintains the two spins parallel, then 

Bjtf(T) /M(T)\l«+l"2 

Bjtl»(0) \M(0)J 
(51) 

This relation constitutes the proof, as shown by Kittel 
and Van Vleck,23 that the magnetostriction coefficient, 
like the anisotropy coefficient Ri> should follow the 
l(l+l)/2 power law.24 

Though the proof of Eq. (51) is rigorously valid 
only for small perturbations, and at low temperatures, 
an exact calculation25 for the case of a spin one Hamil-
tonian shows that, for the model employed, the 
1(1+1)/2 power law is fairly accurate even for rela
tively large perturbation, and is roughly followed al
most up to the Curie temperature. 

In a previous paper26 we have also calculated the 
equivalent classical average, (FZ(r)°), in the internal 
field approximation, and shown that 

v / I H [ 3 ( Z V 2 > 0 ] . 
( F ^ ) Q ) = r r.,„ / ^ •rI^^0(Te/T)mol, (52) 

/i/2[3(rc/r)woj 
where It is the hyperbolic Bessel function, and m0 is 
the reduced magnetization: 

mQ=M(T)/M(0). (53) 

This approximation, which should be rather good just 
below the Curie temperature, reduces to Eq. (51) at 
low temperatures. For the ferromagnet this equation 
can be applied directly, but for the antiferromagnet 
the argument of /(2M-i)/2 must be replaced by the 
molecular field as given by the Neel theory. 

In order to compare theory with experiment, we 
examine the dependence of magnetostriction on mag
netization rather than on temperature. The theoretical 
curve relates magnetostriction to temperature; it must 
be augmented with the corresponding theoretical de
pendence of magnetization on temperature (a Langevin 
function) so that the temperature can be eliminated 
parametrically. The resulting plot of t{21+1)12 as a 
function of the magnetization is given in Fig. 1, and the 
comparison with the data on nickel will be made in 
Sec. 7. 

23 C. Kittel and J. H. Van Vleck, Phys. Rev. 118, 1231 (1960). 
24 In the antiferromagnet the ground state is not one of anti-

parallel arrangement of spins, but contains zero-point fluctua
tions. P. Pincus [Phys. Rev. 113, 769 (1959)] has shown that this 
replaces the denominators in Eq. (51) by the values in the fully 
antiparallel arrangement. But as this equation is then true at any 
temperature, Pincus shows that it can be evaluated at 0°K, and 
the properties of the antiferromagnetic ground state eliminated, 
thus removing the apparent complication of the antiferromagnetic 
ground state and restoring Eq. (51). 

25 E. R. Callen, J. Appl. Phys. 33, 832 (1962). 
26 E. R. Callen and H. B. Callen, J. Phys. Chem. Solids 16, 

310 (1960). 

FIG. 1. The reduced hyperbolic Bessel functions I&i+Dn/Im as a 
function of the reduced magnetization MQ. 1—2, 4, 6. 

The effective anisotropy coefficients Eq. (21) and 
the specific heat Eq. (22) involve sums over h and l2 

consistent with a given Z; consequently, although the 
individual Bj>h» follow the Z(Z+l)/2 power law, the 
effective anisotropy coefficient and specific heat need 
not behave so simply. In fact, inserting the low-tem
perature approximation (Eq. 51) for the temperature 
dependence of the Bjtf into nfn (from Eq. 21), and 
using the fact that in this temperature range w0

n is 
approximately equal to 1 — ndm0, we find 

KfU=Rfn(0)\l-
V"(o) L 2 

• IZEE 

x-

hih+i) h{h+\) 
_ + 

2 2 

K i
e f f (0)c / 

5«o (54) 

The quantity in the square bracket is the effective 
power of the (sublattice) magnetization. 

The temperature dependence of the magnetoelastic 
contributions to the specific heat can also be found in 
the low-temperature region with the same generality. 
We have that 

d2kfil 

Cv = CVM-TZ K«l. (55) 
1 dT2 

There are magnetoelastic contributions both to the 
isotropic and cubic specific heat, though m contributes 
only to the anisotropic terms. If we let 

then 

CV = CVM+ZCV1K«>\ 

cvi=-r(d*/'ar2)/^" 

(56) 

(57) 
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where RieU is again given by (21b) or at low tern- _ * * - airai 
peratures, by (54). . . . . ***~3 ~Za i ' 

In the low-temperature region in which this power 
law is appropriate the magnetization of a ferromagnet 1 1 _ / 1 \ 
varies with the temperature, according to spin-wave E Bo,iy[ ~Kiy> l+K2

y '1), (62b) 
theory, as ( I S ) " * * * W J 

fno(T) = l~rT^. (58) t 1 2 t 

62Z=- — £ Bo.iaK^l+ Z Bo^KS'K (62c) 
Hence, when spin-wave theory applies, 3 c0

a i 3(5)1/2 coy i 

r-i(i+i} i The external shears, which are proper basis functions 
K Z — | E Z ) — Z) kiuh*'1 for the € representation, are found directly by Eqs. 

L 2 M ; c / h.n (60) and (61c). 
Letting £» be the direction cosines of the measure-

\ / R . MP. J I 1 lr i /2 (59) ment direction with respect to the cubic-crystal axes, 
J,h J'h \ 2 2 / J t n e fractional change in length of the crystal at satura

tion is given by 
The coefficient r has been evaluated for the cubic 
lattices.27 5/ 

For an antif erromagnet spin-wave theory replaces Eq. ^ %>i %° % * 
(58) by an exponential temperature dependence, whence ~ (63) 
Cvl also depends exponentially on the temperature. 1 1 

6. EXTERNAL STRAINS AND MAGNETOSTRICTION 
3 Co a I 

1 1 _ / l \ 
The external strains support only the representations £ #o,i7[ —Kiy,l—K2y'1 )£i2 

7, and e, and are indicated by the modes numbered (15)1/2 coy l \v5 / 
ro. In this case Eq. (16) becomes 

_ V R..I.KM..! .. = „ » , « (HH (15yi*C0v I \>J3 ) <f •*=—?. KfKt\ M=«,7,«. (60) (lSJ^co* ' 
Co" » 

1 

To convert to the conventional strains we recall that 3(5)1/2 c * ' 

(l
afi=tTa,cce=SV/V—exx+tyy+e,2, (61a) 1 

t h a t +—Z Boy(K^^+K^%U+K^%ii). (64) 
e i 7 ) 0 = 5 l / 2 | - ^ _ l ( e x x + e ^ ) - ] j ( 6 1 b ) 

€27.o_ i(\S)ll2rexx— e 1 ^ e elastic constants c^ are related to the conventional 
j fi > elastic constants as in Eq. (6). These results are similar 

to those of Becker and Doring,1 Kittel,28 Lee,29 and 
ei*,0=€V2; €2e'°=ezx; eze'0=exy. (61c) Birss.30 

The Kubic harmonics are convenient for theoretical 
By these relations the external strains can all be found a n a l y s i s b e c a u s e t h e y a r e o r t h o n o r m a l j r e i a t e the 
in terms of the elastic coefficients and the magneto- magnetostriction coefficients simply to the magneto-
elastic coupling coefficients They depend upon the e l a s t i c c o u p l i n g coefficients, and separate the various 
temperature through Eq. (15) and upon the magnetiza- temperature dependences. However, they are not the 
tion direction through the factors K^{Q. By means p o l y n o m i a l s i n t e r m s 0f which magnetostriction is 
of Eqs. (61), one derives readily that u s u a l l y e x p r e s s e c L F o r convenience, we now recall the 

1 . conventional definitions and we give the explicit rela-
r o ag a j tionships between the two sets of polynomials. To avoid 

3 coa * ' reference to a fiducial state of random alignment, we 
choose magnetostriction coefficients with no corrections 

&XZ 

1 1 . / I \ 
£ BoM —K^-Kf* ), (62a) (\ sw* r t i w? r 28 c - K i t t e l > R e v - M o d - phvs- 2 1 > 5 4 1 (1 9 4 9)-

K } ° w E. W. Lee, in Reports on Progress in Physics (The Physical 
Society, London, 1955), Vol. 18, p. 184. 

27 J. Van Kranendonk and J. H. Van Vleck, Rev. Mod. Phys. *°R. R. Birss, in Advances in Physics, edited by N. F. Mott 
30, 1 (1958). (Taylor and Francis Ltd., London, 1959), Vol. 8, p. 252. 
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for "average values." Let 

I L\ 3(5' 3(S)W (15)"* > 

\ 3(5)"* (15)1'2 . / 3(5)"* J 3(5)"* (15) 

L\ 3(5)"* 
+A4 

, 7 . 4 -

(15) 1/2 • ) 
K2^ {is 

Then, 
Ai= (l/co^)5o(2

7, 
A2= (lAoe)5o,2S 
A3= (l/c0

a)Bo,4a, 
A4= (lAo^)5o,47, 
AB= (lAoe)50,4

€, (66a-i) 
A6= (lAoa)50f6

a, 

A7= (l/co'Ofio.e7, 
A8= (l/coOSo.eS 

A9= (lAo050,6'e. 

On the other hand, the magnetostriction is usually de-
_[-[ Z-!^-4 K^A l&H Ki**Al;# veloped in homogeneous polynomials in the direction 

\ 3(5)1/2 (15)1/2 / 3(5)1/2 J cosines of the (sublattice) magnetization, ft, as 

+A5[X'3^^i?2+c.p.]+|A6ir1«.6 

J Y — ^ 
L\ 3(5W2 

+A7 
1 7 . 6 + 

(15> 1/2 
#2^6 Ul2 

> 

\ 3(5)"2 (15)"2 / 3(5)"* J 

a//=Ci E* f /y+c2(f if2^i?2+c.P.) 
+C3(f1

2f2
2+c.p.)+C4Z8f<

4^2 

+C6(fif2f3
2^^+c.p.)+C6fiVf32 

+ C*7 E," f ,-6?,-2+C8(f ^2^^2+C.p.) 
+C,(fi'frt1{,+c.p.). (67) 

This is the form given by Birss30 and by Vautier.31 

The matrices which transform the C, into A,- are, from 
+A8[#3<.6£l$2+c.p.]+A9[Jfil3«'6'!i£2+c.p.]. (65) Ta and I \ , 

1 0 2X3/7 

2X31'2 

0 0 
5X71'2 

2 
0 0 

0 0 

0 0 

and from T., 

0 

- 2 X 3 " 2 

5XH(7)1/2 

0 

4X2"2 

7X11 (13)"2 

0 

5/7 "J 

0 

2X5X31'2 

7X11 

4X2"2 

7X11(13)"2 

2(2X5)"2 

11(7X13)"* J 

'Ci 

c3 

c4 

C6 

Cv 

1 

~ (4:r)"2 

' A l | 

A3 

A4 

A6 

A7 

1 

(3X5)1'2 7(3X5)^ 

2 
0 

3X7X51/2 

0 0 

3X7(3X5)^ 

4 

7X11X51'2 

16 

7(3X5)^ 

2 

7XHX51/2 

1 

0 0 

3XHC2X3X5X7X13)1/2 11(2X3X5X7X13)1/2 

1 
0 

(2X3X7X11X13)^ 

C2 

C9 

(4TT) 1/2 

Ag 

(68) 

(69) 

31 R. Vautier, thesis, University of Paris, 1954 (unpublished). 
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The matrices which effect the inverse transformations are, from Ta and I\ 

(5X7X13)1 /2 

1 

0 

and from Te 

"(3X5)1 '2 - ( 3 / 2 ) 5 1 / 2 

0 (3X7X51 '2)/2 

0 0 

0 0 

0 

5X71 '2 

2X31 /2 

0 

0 

0 

- 3 X 3 1 ' 2 

0 

7 x 3 i / 2 

2 

0 

0 

0 

— 7C13)1/2 

4X21 '2 

0 

7xn(i3)1/'2 

4X21 '2 

0 

2X21 '2 

(7X13)1 '2 

2(2X5)^2 

3(5X7X13)1 '2 

2X21 '2 

11(7X13)1/2 

2(2XS)1 '2 

11(7X13)1/2 

Ai 

A3 

A4 

A6 

A7 

= ( 4 T T ) 1 / 2 

C l 

c8 

c4 

c6 

c7 

(70) 

2(2X5)^2 

(3 /16) (2X3X7XHXl3) 1 / 2 

- ( 3 / 8 ) ( 2 X 3 X 7 X H X l 3 ) 1 / 2 

(3XH/16)(2X3X5X7X13) 1 / 2 (3 /16) (2X3X7XHXl3) 1 / 2 

0 - (2X3X7X11X13) 1 / 2 

(2X3X5X7X13)1 /2 /16 

- ( 9 / 8 X 2 X 3 X 5 X 7 X 1 3 ) 1 ' 2 

A 2 

A 5 

A 8 

LA,. 

= (4TT) 1/2 

c2 

cB 

Cs 

tC9J 

(71) 

7. NICKEL 

Although the theory has been developed explicitly 
for an ionic model, one might hope that the general 
features would remain true for the case of a metal, 
and that the temperature dependence of the magneto-
elastic contribution to the anisotropy would explain 
the extraordinarily rapid variation of the observed 
anisotropy of nickel. This is not the case. Becker and 
Doring1 have estimated the contribution to the ani
sotropy from the external strains and found it to be an 
unimportant part of the total anisotropy of this 
material. Furthermore, because of their structure, 
neither nickel nor iron is capable of supporting internal 
strains which are even under inversion. 

Although the magnetoelastic coupling seems in
capable of accounting for the temperature dependence 
of the anisotropy of nickel, there is approximate agree
ment between the theoretical and the observed tem
perature dependence of the magnetostriction, as we 
now show. 

The magnetostriction of a single crystal of nickel at 
room temperature was reported by Bozorth and 
Hamming32 who fitted it to a five-constant series 
differing slightly from Eq. (67). Converting to the 
latter series, the results of Bozorth and Hamming are 

d = -68 .8X10- 6 , C2= - 7 3 X 10~6, 

C 3 = - 7 . 8 X 1 0 - 6 , C 4 = - 7 . 5 X 1 0 - 6 , 

C5=15.4X10-6 . 

(72) 

On the basis of this result, Birss and Lee33 measured the 
magnetostriction of nickel as a function of temperature 
and fitted their data to the series of Eq. (67), ter
minated at C2. Their room temperature values are 
d = - 7 7 . 2 X l O - 6 and C 2 = -70 .0X10- 6 , in approxi
mate agreement with Bozorth and Hamming. Lee and 
Birss34 applied the analysis of Kittel and Van Vleck23 

to their measurements, and showed that the magneto
striction coefficients could be fitted by a polynomial in 
the magnetization with powers 3, 10 and 21, corre
sponding to 1=2, 4, and 6 terms. While Lee and Birss 
plot their data as a function of temperature, we prefer 
to use the magnetization as the independent variable, 
and to employ the modified Bessel functions,26 which 
are more appropriate at higher temperatures, while 
behaving properly at low temperatures. 

Ignoring higher terms, we have from Eqs. (70) and 
(71) that 

A l ~ ( 4 7 r ) / 1 2 C l ' (73) 
( 3 X 5 ) 1 / ? A 2 ^ ( 4 T T ) 1 / 2 C 2 . 

Furthermore, from Eqs. (66a) and (66b), 

Ai=(l/c0*)J50i2*, 

A2-(lAo<)50 ,2
e . 

(74) 

32 R. M. Bozorth and R. W. Hamming, Phys. Rev. 89, 865 
(1953). 

33 R. R. Birss and E. W. Lee, Proc. Phys. Soc. (London) 76, 502 
(1960). 

34 E. W. Lee and R. R. Birss, Proc. Phys. Soc. (London) 78, 
391 (1961). 
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Then, from Eqs. (15) and (52), 

5 / Tc 
Ai —— r^0,27i5/2 l 

Thus 

and 

_._ _._(3— tn0 \ 
2(cu-cu) \ T J 

1 * / Tc \ 
A2 = —Bo,2

eIy2[ 3—m0 . 
cu \ T J 

(cn-Cn)(T)Ci(X) 

(cn-Cit)(Q) Ci(0) 

cu(T) C2(T) 
r 

cu(0) C2(0)~ 

TsM 3—Wo I, 

f5/2(3—m<A 

(75a) 

(75b) 

(76a) 

(76b) 

.8 

.7 

.6 

A 

.3 

.2 

.1 

/ ( 2 i + D / 2 ( c 0 ) = l . 

as, at r = 0 ° K , 
(77) 

The elastic constants of nickel have been measured 
by Alers, Neighbors, and Sato.35 To express Eqs. (76a) 
and (76b) in terms of the magnetization we employ the 
magnetothermal measurements of Pugh and Argyle,36 

Foner and Thompson,37 and P. Weiss,38 in comple
mentary temperature ranges. 

In Fig. 2 we plot 

C(cn-c2)(r)/(Cll-Cl2)(o)][c1(r)/c1(o)] 
as a function of the experimental magnetization in 
curve (a) and 

Lcu(T)/cu(0)TC2(T)/C2(0)l 

in curve (b), combining the measurements of the elastic 
constants, magnetostriction and magnetization, and 
eliminating the temperature explicitly. On the same 
figure, as curve (c), we also show the modified Bessel 
function /5/2//1/2 as a function of the Langevin mag
netization. Birss and Lee found a broad maximum in 
|Ci | versus T which is only partially reduced by 
the temperature dependence of the elastic constant 
(cu—cu). The T€ magnetostriction coefficient also 
shows evidence of the mixing in of a higher degree 
term at low temperatures. While the theoretical curve 
has an initial slope of 3, curve (b) initially drops 
approximately in accordance with the tenth-power law. 
At room temperature nickel has a reduced magnetiza
tion of about 0.935, and from Fig. 1, at this magnetiza
tion Jf5/2^0.8 and I9 /2=0.5. Thus, from the data of 
Bozorth and Hamming and on the basis of the pre
ceding analysis one might expect that at 0°K, 

C!(0)^-73X1(>- 6 , C 2(0)^-87X10~- 6 , 

C 4 ( 0 ) ^ - 1 4 X 1 0 - 6 , C 6 ( 0 ^ 2 9 X 1 0 - 6 , 
(78) 

35 G. A. Alers, J. R. Neighbors, and H. Sato, J. Phys. Chem. 
Solids 13, 40 (1960). 

36 E. W. Pugh and B. E. Argyle, Suppl. J. Appl. Phys. 32, 334 
(1961). 

37 S. Foner and E. D. Thomson, Suppl. J. Appl. Phys. 30, 229 
(1959). 

38 P. Weiss, Actes Congr. Intern. Froid 1, 508 (1937). 

FIG. 2. (a) Experimental magnetostriction times elastic con
stant (r7) vs experimental magnetization. See Eq. (76a) of text. 
(b) experimental magnetostriction times elastic constant (re) vs 
experimental magnetization. See Eq. (76b) of text, (c) theoretical 
h/2 vs wo. Elastic Constants: Alers, Neighbours, and Sato, 
reference 35; Magnetostriction: Birss and Lee, reference S3; 
Magnetization: Pugh and Argyle, reference 36; Foner and Thomp
son, reference 37; P. Weiss, reference 38. 

with the corresponding magnetoelastic coupling co
efficients 

5 o , 2 ^ - (4TT) 1 / 238X10 6 ergs/cm3, 

B0,2
€=~ (4TT) 1 / 2 28X10 6 ergs/cm3, 

£ o , 4 ^ - (4TT) 1 / 21.0X10 6 ergs/cm3
: 

£0 ,4e^(47r) l / 21.6Xl06 ergs/cm3. 

(79) 

Magnetostriction measurements in progress at the 
Naval Ordnance Laboratory will determine if the in
clusion of the higher degree terms does indeed resolve 
the deviations from the theory, particularly in the case 
of the T€ terms. 

Employing these coefficients in Eq. (21b), one finds 
the magnetoelastic contribution to be a negligible frac
tion of the fourth degree anisotropy of nickel at 0°K, 
and to be of the correct sign but still too small to 
account for the change in sign of K4 of nickel at high 
temperatures. 

8. THE SYMMETRY OF THE DISTORTED CRYSTAL 

Of the 48 symmetry operators of the cubic group 
many are destroyed by the external or internal dis
tortions produced by the magnetoelastic coupling. 
These distortions generally constitute small perturba
tions on an essentially cubic structure. The symmetry 
of these distortions, in principle detectable by x rays, 
provides information on the magnetoelastic coupling 
in the crystal. 

The inversion operation is an element of the original 
cubic group, and it remains an element of the dis
torted crystal. We, therefore, need only consider the 24 
proper rotations of the cubic group. These 24 symmetry 
elements are listed in Table V. We also list the ten 
types of strain components; ea; ^'; e^ ; e2

7; eie; e2'; ez
e; 
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TABLE V. Symmetry elements of the cubic group. A plus sign 
indicates that the basis function goes into plus itself under the 
particular operation. 

E 

C2: x through 
C2: y 
C2: z 

Cn x 
d: x 
C4: y 
C4: y 
C4: z 
C4: z 

C2: [Oi l ] 
C2: [Oi l ] 
C2: [101] 
C2: [101] 
C2: [110] 
C2: [HO] 

C3: [111] 
C3: [ H I ] 
C3: [111] 
C3: [111] 
Cz: [ H i ] 

C: [HI] 
C3: [ H i ] 
Cs: [111] 

/ inversion 

w 
w 
w 

( T / 2 ) 
( - x / 2 ) 

(x/2) 
( -TT/2) 

(»/2) 
(-7T/2) 

w 
w 
w 
w 
w 
w 

( 2 T / 3 ) 

( - 2 T / 3 ) 

( 2 T / 3 ) 

( -2* /3) 
( 2 T / 3 ) 
(-27T/3) 

(2r/3) 
( - 2 T / 3 ) 

r« 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
-f-
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

i > 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

r y 

(1) (2) 

+ 
+ 
+ 
+ 

+ 
+ 

+ 
-f 

-f 

+ 
+ 
+ 
+ 

+ 

X 

4-

+ 

+ 
+ 

+ 

r, 
y 

+ 

+ 

+ 
+ 

+ 

s 

-f-

+ 

+ 
+ 

+ 

X 

+ 
-f 

+ 
+ 

+ 

Tv 

y 

+ 

+ 

+ 
-f 

+ 

3 

-f-

+ 

+ 
+ 

+ 

ei5 '; €2
5'; e3

5'. For each such strain we indicate by a + 
those symmetry operations which leave it invariant. 

If the crystal supports an internal strain of type e^ 
then the distorted crystal will be invariant only under 
those operations which leave e? invariant; in this case 
JE, 3C2i 8C3, / , 3/C2 , SJCZ. Thus, the crystal will have 
the point group Th [or (2/w)3]—provided, of course, 
that no other distortions are present. 

If several types of distortion are simultaneously 
present the only symmetry elements which survive are 
those to which every distortion is symmetric; that is, 
only those operations in Table V which have a + under 
every nonzero distortion. Thus, if both I > and I \ dis
tortions are induced the surviving symmetry operations 
are E, 3C2, / , $JCi. The crystal then has the point 
group D2h [or (2/m)(2/m)(2/m)J 

In the above discussion, it is presumed that the 
several e's in a multidimensional representation are 
unequal. However, if, for example, e i e =e 2

e =€ 3
€ ^0 

additional symmetries may appear, which cannot be 
analyzed simply on the basis of Table V. In this case 
the procedure for finding the surviving symmetries 
would be to write the full 3X3 matrix for each sym
metry operation in the Te representation, and to find 

which of these have the vector (1,1,1) as an eigenvector 
with an eigenvalue of + 1 . Doing this explicitly we find 
that the surviving operations are the twofold rotations 
around the [O i l ] , [ lO l ] , and [110] axes, the threefold 
rotations around [111], the identity, and the product 
of all of these operations with the inversion. The cor
responding point group is Dzd [or 3(2/w)] . 

Of particular interest are those specific directions of 
the (sublattice) magnetization for which certain dis
tortions vanish. The crystal is then more symmetric 
than it is for arbitrary directions of the (sublattice) 
magnetization. 

Consider the one-dimensional representation l y . The 
distortion efi' is proportional to a sum of Kubic har
monics RP'1, for various /. But K&'1 has six nodal planes; 
all those planes containing a face diagonal of the cube 
and the axis perpendicular to that face diagonal. 
Hence, the distortion efir vanishes if the (sublattice) 
magnetization lies in any of these planes. 

Similarly e2
y vanishes if the (sublattice) magnetiza

tion lies in either of the two planes containing the z 
axis and one of the face-diagonals perpendicular to it. 

The strain e3
€ vanishes if the (sublattice) magnetiza

tion lies in either the x-z plane or the y-z plane. 
And finally e3

5' vanishes if the (sublattice) mag
netization lies in any of the four planes containing the 
z axis and either a face-diagonal or a cube axis per
pendicular to the z axis. 

The locus of the directions of (sublattice) magnetiza
tion for which other strain components (such as ei5') 
vanish can be obtained from the above by a simple 
permutation of the coordinates. 

We now examine the particular crystal symmetry 
which results if the (sublattice) magnetization lies 
along one of the principal symmetry directions of the 
cubic system; that is, along [111], [001], or [110]. 

We first consider the (sublattice) magnetization to 
lie along the cube diagonal [111]. This direction lies 
in the nodal planes for €^', e^, e2

7, €X
5', e2

5', and e3
5'. 

Furthermore, examination of the Kubic harmonics of 
Te shows that ei€=e2

6=e3*. This is a symmetry which 
we have discussed previously, the resulting point group 
being DM [or 3{2/m)~]. 

If the (sublattice) magnetization lies in the [001] 
direction it lies in the nodal planes of €$', €2?, eie, e2

e, €3
e, 

ei5', e2
5', and e3

5'. That is, only e^ can be nonzero. The 
surviving symmetry elements are, from Table V, the 
identity, the three twofold rotations around the cube 
axes, the fourfold rotation around the z axis, the twofold 
rotations around [110] and [ l IO] , and the product of 
each of these with the inversion. The point group is 
Dikloi (4/f»)(2/»)(2/m)]. 

Finally, consider the (sublattice) magnetization to 
be in the [110] direction. This direction lies in the 
nodal planes of c*', e2

y, ex% e2% d8 ' , and e2
8'. Thus, only 

ei7, e3
e, and €3

5' can be nonzero. From Table V we see 
that these three strain components are simultaneously 
symmetric only to E and to the twofold rotation around 
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the z axis (and the product of these with the inversion). 
Hence, the point group has only the very low sym
metry of C2h (or 2/m). If the particular crystal did not 
support an internal strain belonging to IV, however, 
the additional symmetry elements of twofold rotation 
around [110] and [110] would survive, and the point 
group would be Dih [or (2/m)(2/m)(2/m)2- Thus, 
examination of the crystal symmetry, by x-ray dif

fraction, as a function of the direction of (sublattice) 
magnetization can give interesting information as to 
the magnetoelastic coupling. 
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Infrared Light Stimulation and Quenching in ZnS Phosphors* 
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The effects of infrared on the luminescence of three ZnS phosphors (activated with Cu, Ag, and Cu-Pb) 
at liquid nitrogen temperatures has been investigated. The transient stimulation and permanent quenching 
(or enhancement) was determined at various wavelengths in the emission spectrum of the ultraviolet-
excited phosphors. Two infrared bands were used, one at about 0.75, the other at about 1.3. The effect of 
the infrared varies with the emission wavelength but not sufficiently to explain discrepancies with the usually 
accepted phosphor model. A modification of this model consisting of a coupled trapped electron-ionized 
activator complex is proposed, and the consequences are discussed. 

I. INTRODUCTION 

IN a previous paper (hereafter called I) , Kallmann and 
Luchner1 have reported on measurements concern

ing the mechanism of ir (infrared) light stimulation in 
ZnS-type phosphors. The main result was that such 
stimulation cannot be brought about by an independent 
direct release of trapped electrons as was often assumed. 
I t was shown that many effects concerning stimulation 
could be understood with the assumption that the ir 
somehow produces a faster recombination between con
duction electrons and ionized activators, which leads 
to a transient increase in luminescent intensity. In order 
to provide a model for stimulation and quenching, it is 
necessary to find out more about the mechanism by 
which the ir produces faster recombinations and quench
ing at the same time, as indicated by many experiments. 
The present paper deals with this question and proposes 
a model for trapping of electrons and this release by ir 
which is somewhat different than envisaged up to 
now. 

Before the experiments and their interpretation are 
given, we will summarize numerous discrepancies be-

* Work supported by the U. S. Army Signal Corps, under 
contract No. DA 36-039 SC-85126. 

f On leave from Laboratorium fiir technische Physik, Tech-
nische Hochschule, Munchen, Germany. 

| Also at Department of Physics, Hunter College, New York, 
New York. 

1 H. Kallmann and K. Luchner, Phys. Rev. 123, 2013 (1961). 

tween the "old" model which has been rather success
fully used up to now,2 and results already obtained. 

(1) Both stimulation and quenching of luminescence 
and photoconductivity by infrared evidence the same 
infrared wavelength dependence3-6 showing that they 
are produced by the same elementary process. This can
not be understood by using the assumption that stimu
lation is due to the independent release of electrons from 
traps and that quenching is due to the independent re
lease of holes from ionized activators. 

(2) The equilibrium quenching of luminescence (due 
to infrared) is less than that of the photoconductivity7; 
if the light emission is proportional to the product of n 
and Pt (see paragraph 4 below), light quenching should 
be greater. 

(3) Infrared stimulation of luminescence after excita
tion is not instantaneous but has a finite rise8; this 

2 M. Schon, Z. Physik 119, 463 (1942); H. A. Klasens, Nature 
158, 306 (1946). 

3 1 . Broser and R. Broser Warminsky, Z. Elektrochem. 61, 209 
(1957). 

4 F. G. Ullmann and J. J. Dropkin, J. Electrochem. Soc. 108, 
156 (1961). 

5 H. Kallmann, B. Kramer, and A. Perlmutter, Phys. Rev. 
99, 391 (1955). 

6 P. Wachter (to be published). 
7 B. Kramer and H. Kallmann, International Conference on the 

Luminescence of Organic and Inorganic Materials, edited by H. P. 
Kallmann and G. M. Spruch (John Wiley & Sons, Inc., New York, 
1962). 

8 M. Sidran, Ph.D. thesis, New York University, 1955 (unpub
lished), and H. Kallmann and E. Sucov, Phys. Rev. 109,1473 (1958). 


